Resilience of the food system to phosphorus shortages on a telecoupled planet

  • 1.

    Nesme, T., Metson, GS & Bennett, EM Global phosphorus flows through agricultural trade. Glob. About. Change 50, 133-141 (2018).

    Google Scholar article

  • 2.

    Kastner, T., Erb, KH & Haberl, H. Rapidly Growing Agricultural Trade: Effects on Global Zone Efficiency and the Role of Management. About. Res. Lett. 9, 034015 (2014).

  • 3.

    Puma, MJ, Bose, S., Chon, SY & Cook, BI Assessing the Changing Fragility of the Global Food System. About. Res. Lett. ten, 024007 (2015).

  • 4.

    Bernard de Raymond, A. et al. Systemic risk and food security. Emerging trends and future research avenues. Glob. Dry. 29, 100547 (2021).

  • 5.

    Nesme, T., Roques, S., Metson, GS & Bennett, EM The surprisingly small but growing role of international agricultural trade on the European Union’s dependence on mineral phosphorus fertilizers. About. Res. Lett. 11, 025003 (2016).

  • 6.

    Liu, J. et al. Frame sustainability in a telecoupled world. School. Soc. 18, 26 (2013).

  • seven.

    Rosa, L., Chiarelli, DD, Tu, C., Rulli, MC & D’Odorico, P. Unsustainable global virtual water flows in agricultural trade. About. Res. Lett. https://doi.org/10.1088/1748-9326/ab4bfc (2019).

  • 8.

    D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: socio-environmental models, factors and impacts. About. Res. Lett. 14, 053001 (2019).

    Google Scholar article

  • 9.

    Marchand, P. et al. Reserves and trade jointly determine exposure to food supply shocks. About. Res. Lett. 11, 095009 (2016).

    Google Scholar article

  • ten.

    Tu, C., Suweis, S. & D’Odorico, P. Impact of globalization on the resilience and sustainability of natural resources. Nat. To support 2, 283-289 (2019).

    Google Scholar article

  • 11.

    Mineral raw materials summaries 2019 (USGS, 2019); https://doi.org/10.3133/70202434

  • 12.

    Lun, F. et al. Influences of international agricultural trade on the global phosphorus cycle and its associated issues. Glob. About. Change 69, 102282 (2021).

    Google Scholar article

  • 13.

    Schipanski, ME & Bennett, EM The influence of agricultural trade and animal production on the global phosphorus cycle. Ecosystems 15, 256-268 (2012).

    Google Scholar CAS Article

  • 14.

    Cordell, D. & Neset, TSS Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to multidimensional stressors of phosphorus scarcity. Glob. About. Change 24, 108-122 (2014).

    Google Scholar article

  • 15.

    Cordell, D. & White, S. The Bottleneck of Life: Preserving the world’s phosphorus for a secure food future. Annu. Rev. About. Resour. 39, 161-188 (2014).

    Google Scholar article

  • 16.

    Smil, V. Phosphorus in the environment: natural fluxes and human interference. Annu. Rev. Energy Approx. 25, 53-88 (2000).

    Google Scholar article

  • 17.

    Sattari, SZ, Bouwman, AF, Giller, KE & van Ittersum, MK Residual soil phosphorus as a missing piece in the puzzle of the global phosphorus crisis. Proc. Natl Acad. Sci. United States 109, 6348-6353 (2012).

    Google Scholar CAS Article

  • 18.

    Trimmer, JT & Guest, JS Recirculation of human-made nutrients from cities to agriculture on six continents. Nat. To support. 1, 427-435 (2018).

    Google Scholar article

  • 19.

    FAOSTAT statistical database (FAO, 2019); http://www.fao.org/faostat/en/#data

  • 20.

    Heffer, P., Gruère, A. & Roberts, T. Global Crop Fertilizer Use Assessment (IFA, 2017).

  • 21.

    Ringeval, B. et al. Phosphorus in agricultural soils: drivers of its worldwide distribution. Glob. Change Biol. 23, 3418-3432 (2017).

    Google Scholar article

  • 22.

    MacDonald, GK et al. Rethinking agricultural trade relations in the era of globalization. Biosciences 65, 275-289 (2015).

    Google Scholar article

  • 23.

    Ordway, EM, Asner, GP & Lambin, EF Risk of deforestation due to the expansion of staple crops in sub-Saharan Africa. About. Res. Lett. 12, 044015 (2017).

  • 24.

    Cassidy, ES, West, PC, Gerber, JS & Foley, JA Redefining crop yields: tonnes people fed per hectare. About. Res. Lett. 8, 034015 (2013).

    Google Scholar article

  • 25.

    Zeev, M. Preferential attachment, homophilia and the structure of international networks, 1816-2003. Confl. Manage. Peace Sci. 29, 341-369 (2012).

    Google Scholar article

  • 26.

    Le Noé, J. et al. The legacy of phosphorus offers opportunities for agro-ecological transition (France 1850-2075). About. Res. Lett. https://doi.org/10.1088/1748-9326/ab82cc (2020).

  • 27.

    Mueller, ND et al. Bridging yield gaps through nutrient and water management. Nature 490, 254-257 (2012).

    Google Scholar CAS Article

  • 28.

    Lun, F. et al. Global and regional phosphorus balances in agricultural systems and their implications for phosphorus use efficiency. Syst. of land Sci. Data https://doi.org/10.5194/essd-10-1-2018 (2018).

  • 29.

    Van Vuuren, DP, Bouwman, AF & Beusen, AHW Phosphorus demand for the period 1970-2100: a resource depletion scenario analysis. Glob. About. Change 20, 428-439 (2010).

    Google Scholar article

  • 30.

    Elser, JJ, Elser, TJ, Carpenter, SR & Brock, WA Diet shift in fertilizer products indicates more turbulence ahead for food security. PLoS A 9, e93998 (2014).

    Google Scholar article

  • 31.

    Headey, D. Rethinking the Global Food Crisis: The Role of Trade Shocks. Food policy 36, 136-146 (2011).

    Google Scholar article

  • 32.

    Rosen, J. Humanity evacuates one of the essential elements of life. Atlantic (February 8, 2021).

  • 33.

    Risks and Opportunities in the Global Phosphate Rock Market (The Hague Center for Strategic Studies, 2012).

  • 34.

    The global fertilizer crisis and Africa (Future Agricultures, 2008).

  • 35.

    Tamea, S., Laio, F. & Ridolfi, L. Global effects of local food production crises: a virtual water perspective. Sci. representing 6, 18803 (2016).

    Google Scholar CAS Article

  • 36.

    Yang, X. & Post, WM Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using the Hedley fractionation method. Biogeosciences 8, 2907-2916 (2011).

    Google Scholar CAS Article

  • 37.

    Menezes-Blackburn, D. et al. Opportunities for mobilizing recalcitrant phosphorus in agricultural soils: a review. Vegetable soil 427, 5-16 (2018).

    Google Scholar CAS Article

  • 38.

    Roy, ED et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    Google Scholar CAS Article

  • 39.

    Chen, M. & Graedel, TE A half-century of global phosphorus flows, stocks, production, consumption, recycling and environmental impacts. Glob. About. Change 36, 139-152 (2016).

    Google Scholar article

  • 40.

    Brownlie, WJ et al. Global actions for a sustainable future of phosphorus. Nat. Food 2, 71-74 (2021).

    Google Scholar article

  • 41.

    Sharpley, A., Kleinman, P., Jarvie, H. & Flaten, D. Distant views and local realities: the limits of global assessments for restoring the fragmented phosphorus cycle. Agric. About. Lett. 1, 160024 (2016).

    Google Scholar article

  • 42.

    Van Drecht, G., Bouwman, AF, Harrison, J. & Knoop, JM Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochemistry. Cycles 23, GB0A03 (2009).

    Google Scholar article

  • 43.

    Tonini, D., Saveyn, HGM & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. To support. 2, 1051-1061 (2019).

    Google Scholar article

  • 44.

    Nesme, T., Senthilkumar, K., Mollier, A. & Pellerin, S. Effects of crop and livestock segregation on phosphorus resource use: a systematic regional analysis. EUR. J. Agron. 71, 88-95 (2015).

    Google Scholar CAS Article

  • 45.

    Grote, U., Craswell, E. & Vlek, P. Nutrient Flows in International Trade: Ecological and Policy Issues. About. Sci. Politics 8, 439-451 (2005).

    Google Scholar article

  • 46.

    Hamilton, HA et al. Trade and the role of non-food raw materials in global eutrophication. Nat. To support. 1, 314-321 (2018).

    Google Scholar article

  • 47.

    Kastner, T., Kastner, M. & Nonhebel, S. Tracing the distant environmental impacts of agricultural products from a consumer perspective. School. Econ. 70, 1032-1040 (2011).

    Google Scholar article

  • 48.

    Herrero, M. et al. Biomass use, production, feed efficiency and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. United States 110, 20888–20893 (2013).

    Google Scholar CAS Article

  • 49.

    Sheldrick, W., Syers, JK & Lingard, J. Contribution of livestock faeces to nutritional balance sheets. Nutr. Cycl. Agroecosist. 66, 119-131 (2003).

    Google Scholar article

  • 50.

    Yunju, L. et al. Fertilizer use patterns in Yunnan province, China: implications for agricultural and environmental policy. Agric. Syst. 110, 78-89 (2012).

    Google Scholar article

  • 51.

    Nesme, T., Bellon, S., Lescourret, F., Senoussi, R. & Habib, R. Are agronomic models useful for studying farmers’ fertilization practices? Agric. Syst. 83, 297-314 (2005).

    Google Scholar article

  • 52.

    Yang, Y. & Suh, S. Changes in the environmental impacts of major crops in the United States. About. Res. Lett. ten, 094016 (2015).

  • Comments are closed.