Global Nutrient Equity for People and Planet

  • 1.

    Steffen, W. & Stafford Smith, M. Global Borders, Equity and Global Sustainability: Why Rich Countries Could Benefit from More Equity. Court. Opinion. About. To support. 5, 403-408 (2013).

    Google Scholar

  • 2.

    Kahiluoto, H., Kuisma, M., Kuokkanen, A., Mikkilä, M. & Linnanen, L. Local and social facets of planetary boundaries: the right to nutrients. About. Res. Lett. ten, 104013 (2015).

    Google Scholar ADS

  • 3.

    Kahiluoto, H., Kuisma, M., Kuokkanen, A., Mikkilä, M. & Linnanen, L. Taking Planetary Nutrient Limits Seriously: Can We Feed People? Glob. Dry. 3, 16-21 (2014).

    Google Scholar

  • 4.

    Steffen, W. et al. Planetary frontiers: guiding human development on a changing planet. Science Express (March 15, 2015).

  • 5.

    Breitburg, D. et al. Decreased oxygen in the global ocean and coastal waters. Science 359, 6371 (2018).

    Google Scholar

  • 6.

    Thompson, RL et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Switch 9, 993-998 (2019).

    ADS CAS Google Scholar

  • 7.

    Sanchez, PA & Swaminathan, MS Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    Google Scholar PubMed

  • 8.

    Lagi, M., Bertrand, KZ & Bar-Yam, Y. in Conflict and complexity: understanding complex systems (eds Fellman, PV et al.) 249-259 (Springer, 2015).

  • 9.

    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51-59 (2015).

    ADS CAS PubMed Google Scholar

  • ten.

    Geels, FW Technological transitions as an evolutionary reconfiguration process: a multilevel perspective and a case study. Res. Politics 31, 1257-1274 (2002).

    Google Scholar

  • 11.

    Potter, P., Ramankutty, N., Bennett, EM & Donner, SD Characterization of spatial patterns of global fertilizer application and manure production. Interact with the Earth. 14, 002 (2010).

    Google Scholar

  • 12.

    Liu, J. et al. A high resolution assessment of nitrogen fluxes in cropland. Proc. Natl Acad. Sci. United States 107, 8035-8040 (2010).

    ADS CAS PubMed PubMed Central Google Scholar

  • 13.

    MacDonald, GK, Bennett, EM, Potter, PA & Ramankutty, N. Agronomic phosphorus imbalances in the world’s croplands. Proc. Natl Acad. Sci. United States 108, 3086-3091 (2011).

    ADS CAS PubMed PubMed Central Google Scholar

  • 14.

    Mueller, ND et al. Bridging yield gaps through nutrient and water management. Nature 490, 254-257 (2012).

    ADS CAS PubMed Google Scholar

  • 15.

    Sanchez, PA et al. in Restoring soil fertility in Africa (eds Buresh, RJ et al.) 1–46 (SSSA Special, 1997).

  • 16.

    Van Meter, KJ, Basu, NB, Veenstra, JJ & Burras, CL The inheritance of nitrogen: emerging evidence of nitrogen accumulation in anthropogenic landscapes. About. Res. Lett. 11, 035014 (2016).

    Google Scholar ADS

  • 17.

    Bouwman, AF et al. Lessons learned from temporal and spatial models in the overall use of N and P fertilizers on cropland. Sci. representing 7, 40366 (2017).

    ADS CAS PubMed PubMed Central Google Scholar

  • 18.

    Sattari, SZ, Bouwman, AF, Giller, KE & van Ittersum, MK Residual soil phosphorus as a missing piece in the puzzle of the global phosphorus crisis. Proc. Natl Acad. Sci. United States 109, 6348-6353 (2012).

    ADS CAS PubMed PubMed Central Google Scholar

  • 19.

    MacDonald, GK & Bennett, EM Accumulation of phosphorus in the soils of the St. Lawrence River watershed: a century-old perspective. Ecosystems 12, 621-635 (2010).

    Google Scholar

  • 20.

    Tan, ZX, Lal, R. & Wiebe, KD Overall soil nutrient depletion and yield reduction. J. Support. Agric. 26, 123-146 (2005).

    Google Scholar

  • 21.

    Meier, HE et al. Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: a comprehensive multi-model study. Ambio 41, 558-573 (2012).

    PubMed PubMed Central Google Scholar

  • 22.

    Ekholm, P. & Mitikka, S. Agricultural lakes in Finland: water quality and current trends. About. Monit. Assess. 116, 111-135 (2006).

    Google School CAS PubMed Fellow

  • 23.

    Savchuk, OP & Wulff, F. Long-term modeling of large-scale nutrient cycles throughout the Baltic Sea. Hydrobiology 629, 209-224 (2009).

    CAS Google Scholar

  • 24.

    Carpenter, SR Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. United States 102, 10002-1005 (2005).

    ADS CAS PubMed PubMed Central Google Scholar

  • 25.

    Storage, MA Tropical soils and food security: the next fifty years. Science 302, 1356-1359 (2003).

    ADS CAS PubMed Google Scholar

  • 26.

    The State of Food Security and Nutrition in the World 2020: Building climate resilience for food security and nutrition (FAO, IFAD, UNICEF, WFP, WHO, 2020).

  • 27.

    Highlights from the 2019 World Population Outlook (United Nations Department of Economic and Social Affairs, 2019).

  • 28.

    Jasinski, SM Mineral raw materials summaries: Phosphate rock (US Geological Survey, 2021).

  • 29.

    Agbahey, JUI, Luckmann, J., Grethe, H. & Alemub, BA How do national policies affect the integration of Ethiopia’s fertilizer markets with world markets? J. Agric. Dev. Too much. Subtrop. 116, 213-226 (2015).

    Google Scholar

  • 30.

    Rimhanen, K. & Kahiluoto, H. Management of harvested carbon from smallholder mixed farming in Ethiopia. Agric. Syst. 130, 13-22 (2014).

    Google Scholar

  • 31.

    Lassaletta, L. et al. Food and feed trade as a driver of the global nitrogen cycle: trends over 50 years. Biogeochemistry 118, 225-241 (2014).

    Google Scholar

  • 32.

    Sillman, J. et al. An analysis of the environmental sustainability of the life cycle of microbial protein production via power-to-food approaches. Int. J. Life cycle assessment. 25, 2190-2203 (2020).

    CAS Google Scholar

  • 33.

    Van Dijk, KC, Lesschen, JP & Oenema, O. Phosphorus flows and balances of the Member States of the European Union. Sci. About. 542, 1078-1093 (2016).

    ADS PubMed Google Scholar

  • 34.

    Kahiluoto, H. et al. Potential of agri-food waste in mitigating climate change and eutrophication – two case regions. Biomass Bioenergy 35, 1983-1994 (2011).

    CAS Google Scholar

  • 35.

    Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food industry. 95, 12-19 (2015).

    Google School CAS PubMed Fellow

  • 36.

    Conley, DJ et al. Combating hypoxia in the Baltic Sea: is engineering a solution? About. Sci. Technol. 43, 3407-3411 (2009).

    ADS CAS PubMed Google Scholar

  • 37.

    Van Loon, MP et al. Impacts of the intensification or expansion of cereal crops in sub-Saharan Africa in the coming decades on greenhouse gas emissions and food security. Glob. Change Biol. 25, 3720–3730 (2019).

    Google Scholar ADS

  • 38.

    Wilkinson, RG & Pickett, KE Income inequality and social dysfunction. Annu. Rev. Sociol. 35, 493-511 (2009).

    Google Scholar

  • 39.

    Raworth, K. Oxfam Discussion Paper (Oxfam, 2012).

  • 40.

    van den Berg, NJ et al. Implications of various effort-sharing approaches for national carbon budgets and emission trajectories. Climate change 162, 1805-1822 (2020).

    ADS CAS Google Scholar

  • 41.

    McDermott, M., Mahanty, S. & Schreckenberg, K. Examining Equity: A Multidimensional Framework for Assessing Equity in Payments for Ecosystem Services. About. Sci. Politics 33, 416-427 (2013).

    Google Scholar

  • 42.

    Ostrom, E. Polycentric systems for dealing with collective action and global environmental change. Glob. About. Switch 20, 550-557 (2010).

    Google Scholar

  • 43.

    Rawls, J. A theory of justice (Belknap, 1971).

  • 44.

    McCrudden, C. Human Dignity and the Judicial Interpretation of Human Rights. EUR. J. Int. Law 19, 655-724 (2008).

    Google Scholar

  • 45.

    Ayala, A. & Meier, BM A human rights approach to the health implications of food and nutrition security. Rev. 38, 10 (2017).

    PubMed PubMed Central Google Scholar

  • 46.

    Erisman, JW et al. in The European nitrogen assessment (eds Sutton, MA et al.) 9-31 (Cambridge Univ. Press, 2011).

  • 47.

    Abiven, S., Schmidt, MWI & Lehmann, J. Biochar by design. Nat. Geosci. 7, 324-327 (2014).

    Google Scholar ADS

  • 48.

    Ridder, M., de Jong, S., Polchar, J. & Lingemann, S. Risks and Opportunities in the Global Phosphate Rock Market: Robust Strategies in Times of Uncertainty (The Hague Center for Strategic Studies, 2013).

  • 49.

    Sutton, MA et al. Too much of a good thing. Nature 472, 159-161 (2016).

    Google Scholar ADS

  • 50.

    Sobota, DJ, Compton, JE, McCrackin, ML & Singh, S. Cost of Reactive Nitrogen Releases from Human Activities to the Environment in the United States. About. Res. Lett. ten, 025006 (2015).

    Google Scholar ADS

  • 51.

    Goulder, LH & Schein, LR Carbon taxes versus cap and trade: a critical review. Clim. Change Econ. 4, 135010 (2013).

    Google Scholar

  • 52.

    Tradable permits: policy assessment, design and reform (OECD, 2004).

  • 53.

    Chen, Y., Wang, C., Nie, P. & Chen, Z. A clean innovation comparison between the carbon tax and the cap-and-trade system. Energy strategy Rev. 29, 100483 (2020).

    Google Scholar

  • 54.

    Framework for nutrient quota and creditsExchange system for HELCOM contracting parties to reduce eutrophication in the Baltic Sea (Green Stream Network, 2008).

  • 55.

    Moberg, E. et al. Combined innovations in public policy, the private sector and culture can lead to sustainable transitions in food systems. Nat. Food 2, 282-290 (2021).

    Google Scholar

  • 56.

    Christensen, CM, McDonald, R., Altman, EJ & Palmer, JE Disruptive Innovation: An Intellectual History and Directions for Future Research. J. Manage. Standard. 55, 7 (2018).

    Google Scholar

  • 57.

    Henderson, R. Reimagining capitalism in a world on fire (Public affairs, 2020).

  • Source link

    Comments are closed.