Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment

0
  • 1.

    Poland, J. Breeding-assisted genomics. Curr. Opin. Plant Biol. 24, 119–124 (2015).

    CAS
    PubMed
    Article 

    Google Scholar

  • 2.

    Hickey, J. M., Chiurugwi, T., Mackay, I., Powell, W., & Implementing Genomic Selection in CGIAR Breeding Programs Workshop Participants. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49, 1297–1303 (2017).

    CAS
    PubMed
    Article 

    Google Scholar

  • 3.

    Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366, eaax0025 (2019).

    CAS
    PubMed
    Article 

    Google Scholar

  • 4.

    Hickey, L.T. et al. Breeding crops to feed 10 billion. Nat Biotechnol 37, 744–754 (2019).

    CAS
    PubMed
    Article 

    Google Scholar

  • 5.

    Heffner, E. L., Sorrells, M. E. & Jannink, J. L. Genomic selection for crop improvement. Crop Sci. 49, 1–12 (2009).

    CAS
    Article 

    Google Scholar

  • 6.

    Ceccarelli, S. & Grando, S. Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155, 349–360 (2007).

    Article 

    Google Scholar

  • 7.

    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016).

    Article 

    Google Scholar

  • 8.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    CAS
    PubMed
    Article 

    Google Scholar

  • 9.

    Acevedo, M. et al. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 6, 1231–1241 (2020).

    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 10.

    Witcombe, J. R., Joshi, A., Joshi, K. D. & Sthapit, B. R. Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Exp. Agriculture 32, 445–460 (1996).

    Article 

    Google Scholar

  • 11.

    Rhoades, R. E. & Booth, R. H. Farmer-back-to-farmer: a model for generating acceptable agricultural technology. Agric. Adm. 11, 127–137 (1982).

    Google Scholar

  • 12.

    Fadda, C. et al. Integrating conventional and participatory crop improvement for smallholder agriculture using the seeds for needs approach: a review. Front. Plant Sci. 11, 1 (2020).

    Article 

    Google Scholar

  • 13.

    Ceccarelli, S. Efficiency of plant breeding. Crop Sci. 55, 87 (2015).

    Article 

    Google Scholar

  • 14.

    Ceccarelli, S. & Grando, S. Participatory plant breeding: who did it, who does it and where? Exp. Agriculture 2019, 1–11 (2019).

    Google Scholar

  • 15.

    van Eeuwijk, F. A., Cooper, M., DeLacy, I. H., Ceccarelli, S. & Grando, S. Some vocabulary and grammar for the analysis of multi-environment trials, as applied to the analysis of FPB and PPB trials. Euphytica 122, 477–490 (2001).

    Article 

    Google Scholar

  • 16.

    van Etten, J. et al. Crop variety management for climate adaptation supported by citizen science. Proc. Natl Acad. Sci. USA 116, 4194–4199 (2019).

    PubMed
    PubMed Central
    Article
    CAS 

    Google Scholar

  • 17.

    van Etten, J. et al. First experiences with a novel farmer citizen science approach: crowdsourcing participatory variety selection through on-farm triadic comparisons of technologies (tricot). Exp. Agriculture 55, 275–296 (2019).

    Article 

    Google Scholar

  • 18.

    Annicchiarico, P., Russi, L., Romani, M., Pecetti, L. & Nazzicari, N. Farmer-participatory vs. conventional market-oriented breeding of inbred crops using phenotypic and genome-enabled approaches: a pea case study. Field Crops Res. 232, 30–39 (2019).

    Article 

    Google Scholar

  • 19.

    Mengistu, D. K. et al. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol. J. 14, 1800–1812 (2016).

    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 20.

    Kidane, Y. G. et al. Genome wide association study to identify the genetic base of smallholder farmer preferences of Durum wheat traits. Front. Plant Sci. 8, 1230 (2017).

    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 21.

    Mancini, C. et al. Joining smallholder farmers’ traditional knowledge with metric traits to select better varieties of Ethiopian wheat. Sci. Rep. 7, 9120 (2017).

    PubMed
    PubMed Central
    Article
    CAS 

    Google Scholar

  • 22.

    vom Brocke, K. et al. Participatory variety development for sorghum in Burkina Faso: farmers’ selection and farmers’ criteria. Field Crops Res. 119, 183–194 (2010).

    Article 

    Google Scholar

  • 23.

    Sthapit, B. R., Joshi, K. D. & Witcombe, J. R. Farmer participatory crop improvement. III. Participatory plant breeding, a case study for rice in Nepal. Exp. Agriculture 32, 479–496 (1996).

    Article 

    Google Scholar

  • 24.

    Wheat Atlas, Available at: http://beta.wheatatlas.org/. Accessed March 2020.

  • 25.

    Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 26.

    Hayes, B. J. & Daetwyler, H. D. 1000 bull genomes project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 7, 89–102 (2019).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 27.

    Quintero, A., Molero, G., Reynolds, M. P. & Calderini, D. F. Trade-off between grain weight and grain number in wheat depends on GxE interaction: a case study of an elite CIMMYT panel (CIMCOG). Eur. J. Agron. 92, 17–29 (2018).

    Article 

    Google Scholar

  • 28.

    Ceccarelli, S., Erskine, W., Hamblin, J. & Grando, S. Genotype by environment interaction and international breeding programmes. Exp. Agriculture 30, 177–187 (1994).

    Article 

    Google Scholar

  • 29.

    Eeuwijk, F. Avan et al. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci. 282, 23–39 (2019).

    PubMed
    Article
    CAS
    PubMed Central 

    Google Scholar

  • 30.

    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    CAS
    PubMed
    Article 

    Google Scholar

  • 31.

    Dixon, J. et al. Adoption and economic impact of improved wheat varieties in the developing world. J. Agric. Sci. 144, 489–502 (2006).

    Article 

    Google Scholar

  • 32.

    Jalleta, T. Participatory evaluation of the performance of some improved bread wheat (Triticum aestivum) varieties in the Jijiga plains of eastern Ethiopia. Exp. Agriculture 40, 89–97 (2004).

    Article 

    Google Scholar

  • 33.

    Tesfaye, S., Bedada, B. & Mesay, Y. Impact of improved wheat technology adoption on productivity and income in Ethiopia. Afr. Crop Sci. J. 24, 127–135 (2016).

    Article 

    Google Scholar

  • 34.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    CAS
    PubMed
    Article 

    Google Scholar

  • 35.

    Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 36.

    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    Article 

    Google Scholar

  • 37.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    PubMed
    Article
    CAS 

    Google Scholar

  • 38.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 5, 1–6 (2014).

    Google Scholar

  • 39.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013).

    Article 

    Google Scholar

  • 40.

    Ceccarelli, S. Plant Breeding with Farmers: A technical manual(International Center for Agricultural Research in the Dry Areas (ICARDA), 2012). https://hdl.handle.net/20.500.11766/7745.

  • 41.

    Ending hunger: science must stop neglecting smallholder farmers. Nature. https://doi.org/10.1038/d41586-020-02849-6 (2020).

  • 42.

    Beza, E. et al. What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers. PLoS ONE 12, e0175700 (2017).

    PubMed
    PubMed Central
    Article
    CAS 

    Google Scholar

  • 43.

    de Jonge, B. Plant variety protection in Sub-Saharan Africa: balancing commercial and smallholder farmers’ interests. J. Politics Law 7, p100 (2014).

    Article 

    Google Scholar

  • 44.

    Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

    PubMed
    Article 

    Google Scholar

  • 45.

    Brinton, J. et al. A haplotype-led approach to increase the precision of wheat breeding. Commun. Biol. 3, 1–11 (2020).

    Article
    CAS 

    Google Scholar

  • 46.

    Lado, B. et al. Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Theor. Appl. Genet. 131, 2719–2731 (2018).

    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 47.

    Cobb, J. N. et al. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor. Appl. Genetics 132, 627–645 (2019).

    Article 

    Google Scholar

  • 48.

    Firke, S. janitor: simple tools for examining and cleaning dirty data. R package version 1.2.1. Available at: https://CRAN.R-project.org/package=janitor (2020).

  • 49.

    Runcie, D. & Cheng, H. Pitfalls and remedies for cross validation with multi-trait genomic prediction methods. G3: Genes Genomes Genet. 9, 3727–3741 (2019).

    Article 

    Google Scholar

  • 50.

    Ibba, M. I. et al. Genome‐based prediction of multiple wheat quality traits in multiple years. Plant Genome https://doi.org/10.1002/tpg2.20034 (2020).

  • 51.

    Mangione, D., Senni, S., Puccioni, M., Grando, S. & Ceccarelli, S. The cost of participatory barley breeding. Euphytica 150, 289–306 (2006).

    Article 

    Google Scholar

  • 52.

    Leonelli, S., Davey, R. P., Arnaud, E., Parry, G. & Bastow, R. Data management and best practice for plant science. Nat. Plants 3, 1–4 (2017).

    Article 

    Google Scholar

  • 53.

    van Etten, J. et al. ClimMob: Software to support experimental citizen science in agriculture. version 3.1. Available at: https://climmob.net (2020).

  • 54.

    Turner, H. L., van Etten, J., Firth, D. & Kosmidis, I. Modelling rankings in R: the PlackettLuce package. Comput. Stat. https://doi.org/10.1007/s00180-020-00959-3 (2020).

    Article 

    Google Scholar

  • 55.

    Kehel, Z., Crossa, J. & Reynolds, M. Identifying Climate Patterns during the Crop-Growing Cycle from 30 Years of CIMMYT Elite Spring Wheat International Yield Trials. in Applied Mathematics and Omics to Assess Crop Genetic Resources for Climate Change Adaptive Traits (eds. Bari, A., Damania, A. B., Mackay, M. & Dayanandan, S.) 151–174 (CRC Press, 2016).

  • 56.

    de Sousa, K. et al. Replication data for: Data-driven decentralized breeding increases genetic gain in a challenging crop production environment. https://doi.org/10.7910/DVN/OEZGVP (2020).

  • 57.

    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22, 55 (1932).

    Google Scholar

  • 58.

    R. Core Team. R: A language and environment for statistical computing. version 4.0.2. (2020).

  • 59.

    Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. & Thompson, R. ASReml User Guide Release 4.1. (Structural Specification, VSN International Ltd, Hemel Hempstead, HP1 1ES, 2015).

  • 60.

    Plackett, R. L. The Analysis of Permutations. J. R. Stat. Soc. Ser. C. 24, 193–202 (1975).

    Google Scholar

  • 61.

    Luce, R. D. Individual Choice Behavior: A Theoretical Analysis. New York: Wiley (1959).

    Google Scholar

  • 62.

    Endelman, J. B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J. 4, 250 (2011).

    Article 

    Google Scholar

  • 63.

    Kendall, M. G. A new measure of ranking correlation. Biometrika 30, 81–93 (1938).

    Article 

    Google Scholar

  • 64.

    Simko, I. & Piepho, H.-P. Combining phenotypic data from ordinal rating scales in multiple plant experiments. Trends Plant Sci. 16, 235–237 (2011).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 65.

    Whitlock, M. C. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J. Evolut. Biol. 18, 1368–1373 (2005).

    CAS
    Article 

    Google Scholar

  • 66.

    Zeileis, A., Hothorn, T. & Hornik, K. Model-based recursive partitioning. J. Comput. Graph. Stat. 17, 492–514 (2008).

    Article 

    Google Scholar

  • 67.

    Sparks, A. H. nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. J. Open Source Softw. 3, 1035 (2018).

    Article 

    Google Scholar

  • 68.

    de Sousa, K., van Etten, J. & Solberg, S. Ø. Climatrends: climate variability indices for ecological modelling. R package version 0.1.6. Available at: https://CRAN.R-project.org/package=climatrends (2020).

  • 69.

    Meyer, H., Reudenbach, C., Hengl, T., Katurji, M. & Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 101, 1–9 (2018).

    Article 

    Google Scholar

  • 70.

    Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychonomic Bull. Rev. 11, 192–196 (2004).

    Article 

    Google Scholar

  • 71.

    Eskridge, K. M. & Mumm, R. F. Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 84-84, 494–500 (1992).

    Article 

    Google Scholar

  • 72.

    Ministry of Agriculture of Ethiopia. Agro-ecological Zonations of Ethiopia. (2020).

  • 73.

    Dowle, M. & Srinivasan, A. data.table: extension of data.frame. R package version 1.12.8. Available at: https://CRAN.R-project.org/package=data.table (2019).

  • 74.

    Kuhn, M. caret: classification and regression training. R package version 6.0-85. Available at: https://CRAN.R-project.org/package=caret (2020).

  • 75.

    de Sousa, K., van Etten, J., Dumble, S., Greliche, N. & Steinke, J. gosset: modelling metadata and crowdsourced citizen science. R package version 0.2.1. Available at: https://agrobioinfoservices.github.io/gosset/ (2020).

  • 76.

    Bache, S. M. & Wickham, H. magrittr: a forward-pipe operator for R. R package version 1.5. Available at: https://CRAN.R-project.org/package=magrittr (2014).

  • 77.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar

  • 78.

    Firth, D. qvcalc: Quasi Variances for Factor Effects in Statistical Models. R package version 1.0.1. Available at: https://CRAN.R-project.org/package=qvcalc (2019).

  • 79.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. Available at: https://CRAN.R-project.org/package=dismo (2017).

  • 80.

    Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Available at: https://cran.r-project.org/package=raster (2015).

  • 81.

    Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R. J. 10, 439–446 (2018).

    Article 

    Google Scholar

  • 82.

    Strimas-Mackey, M. smoothr: Smooth and Tidy Spatial Features. R package version 0.1.2. Available at: https://CRAN.R-project.org/package=smoothr (2020).

  • 83.

    Wei, T. & Simko, V. R package “corrplot”: Visualization of a correlation matrix. R package version 0.9. Available at: https://github.com/taiyun/corrplot (2021).

  • 84.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).

  • 85.

    Pedersen, T. L. patchwork: The Composer of Plots. R package version 1.0.0. Available at: https://CRAN.R-project.org/package=patchwork (2019).

  • Leave A Reply

    Your email address will not be published.